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Abstract We prove a law of large numbers and a central limit theorem for a tagged particle
in a symmetric simple exclusion process in Z with variable diffusion coefficient. The scal-
ing limits are obtained from a similar result for the current through −1/2 for a zero-range
process with bond disorder. For the CLT, we prove convergence to a fractional Brownian
motion of Hurst exponent 1/4.

Keywords Tagged particle · Random environment · Zero-range process · Hydrodynamic
limit · Fractional Brownian motion

1 Introduction

A classical problem in statistical mechanics consists in obtaining the scaling limit of a tagged
(sometimes called tracer) particle in a system of interacting particles. In general, we expect
the limiting process to be a Brownian motion for the system in equilibrium [16], or a time-
inhomogeneous diffusion in general [14]. However, in the special case of a one-dimensional,
nearest-neighbors system (the so-called single-file diffusion), a sub-diffusive behavior is ex-
pected [10]. In the case of a symmetric, simple exclusion process, the scaling limit of a
tagged particle is given by

√
(1 − ϕ)/ϕ)Zt , where Zt is a fractional Brownian motion of

Hurst exponent 1/4 and ϕ is the density of particles [2, 6].
In recent years, the evolution of a random walk in random environment has received a

lot of attention. Therefore, to investigate the behavior of particle systems in random en-
vironments seems to be a natural step ahead. A simple example of a single-file diffusion
with disorder is what we call the exclusion process with variable diffusion coefficient. In
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this model, to each particle we attach a different diffusion coefficient, and we let the sys-
tem evolve in such a way that each particle performs a continuous-time, simple random
walk with its own diffusion coefficient, conditioned to have at most one particle per site (the
exclusion rule). For a physical interpretation of this model and applications, see [1, 3, 5].

In these notes we generalize the results of [2, 6] to the simple exclusion process with
variable diffusion coefficient. We will see that the scaling limits depend on the diffusion
coefficient only through an effective diffusion coefficient, obtained from the related homog-
enization problem. See the discussion in [5], where the case of a simple exclusion process
with two different diffusion coefficients is studied in detail. Due to the variable diffusion
coefficient, the approach of [2, 6] can not be repeated here, since in the associated stirring
process, particles not only exchange their positions, but also their diffusion coefficients. We
adopt here the approach of [17, 18], also included in [5]. There, scaling limits for the tagged
particle are related to scaling limits for the current through the bond 〈−1,0〉 in a zero-range
dynamics. We call this relation the coupling method. The main problem is that the associ-
ated zero-range dynamics in the case of variable diffusion coefficient is a particle system
with bond disorder. As proposed by Rost and Vares [20], scaling limits for the current can
be obtained from the hydrodynamic limit and fluctuations of the density of particles. To
obtain those scaling limits in the presence of random media, various methods have been
developed [7, 8, 19]. However, the method developed recently in [9] applies directly to our
situation, avoiding the hard non-gradient tools needed in the other references. This is spe-
cially convenient in this setting, since the so-called spectral gap for the zero-range process
is not uniform in the density for our model. In fact, we think of this work as a nice direct
application of the results in [9].

This article is organized as follows. In Sect. 2 we define the model and state the main
results. In Sect. 3 we construct the associated zero-range dynamics and we prove the main
results. In Sect. 4 we discuss the relevance of the assumptions made on initial conditions and
on the variable diffusion coefficients. Although the flavour of this paper is rather mathemat-
ical, some of the proofs are only sketched, to make the exposition accessible to a broader
audience. We hope that the interested reader can easily fill the gaps in proofs by following
our guidelines.

2 Definitions and Results

Consider a system of continuous-time, interacting random walks {xi(t); i ∈ Z} on the integer
lattice Z, and a sequence of positive numbers {λi; i ∈ Z}. The dynamics of this system is the
following. The particle xi(t) waits an exponential time of rate λi , at the end of which it
chooses one of its two neighbors with equal probability. If the chosen site is empty, the
particle jumps to that site; if the site is occupied by another particle, the jump is not realized
and a new exponential time starts afresh. We call this interaction the exclusion rule. This
dynamics corresponds to a Markov process defined on the state space �ex

0 = {x ∈ Z
Z;xi �=

xj for i �= j} and generated by the operator

Lex
0 f (x) = 1

2

∑

i∈Z

λi

{
1(x + ei ∈ �ex

0 )[f (x + ei) − f (x)]

+ 1(x − ei ∈ �ex
0 )[f (x − ei) − f (x)]},

where {ei}i is the canonical basis in Z
Z. The number λi is interpreted as the diffusion coef-

ficient of the particle xi . We call the system {xi(t)}i described in this way, the simple exclu-
sion process with variable diffusion coefficient, and we call {λi}i the diffusion coefficient of
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{xi(t)}. Notice that when λi = λ does not depend on i, the process {xi(t)} corresponds to a
labeling of the usual simple exclusion process. We refer to this situation as the homogeneous
case. It will be of interest to define the particle configuration ηt ∈ �ex = {0,1}Z by ηt (x) = 1
if xi(t) = x for some i ∈ Z. Notice that ηt is not a Markov process, since in this case particles
are indistinguishable, and therefore we can not keep track of the different diffusion coeffi-
cients. It will be useful as well to define the environment process ηenv

t (x) = ηt (x + x0(t)).
Differently from the process ηt , ηenv

t is indeed a Markov process. In fact, in dimension d = 1,
due to the exclusion rule and the nearest-neighbor jumps, the relative ordering of particles
is preserved by the dynamics. From now on, we assume, relabeling the particles if needed,
that xi(t) < xi+1(t) for any i ∈ Z. Therefore, in the process ηenv

t , the i-th particle at the right
of the origin has diffusion coefficient λi , and analogously for particles standing at the left of
the origin.

Our aim is to study the asymptotic behavior of a tagged particle for this system. Let
us assume that x0(0) = 0, that is, the 0-th particle starts at the origin. In the homogeneous
case, it is well known that the behavior of a tagged particle is sub-diffusive, with a scaling
exponent equal to 1/4 (instead of the diffusive exponent 1/2). We will see that this is also
the case for the exclusion process with variable diffusion coefficient. For simplicity, we
will assume that the sequence {λi}i is an i.i.d sequence of random variables satisfying the
ellipticity condition ε0 ≤ λi ≤ ε−1

0 for any i ∈ Z. More general conditions on {λi}i will be
discussed below.

Now we explain how do we construct the initial configuration for the process {xi(t)}. Let
u0 : R → [0,1] be a continuous function. For each n > 0, we define the initial distribution
μn as the product measure in �ex with marginals

μn{η;η(x) = 1} =
{

u0(x/n), x �= 0,
1, x = 0.

We define x0(0) = 0. For i > 0, we define xi(0) recursively by xi(0) = inf{x >

xi−1(0);η(x) = 1}. For i < 0, we adopt a similar procedure. We denote this random ini-
tial configuration by xn

u0
. Now we are ready to state our first result, which is a law of

large numbers for x0(t). For technical reasons, we will restrict ourselves to the case on
which limx→±∞ u0(x) = u0(±∞) both exist and are different from 0,1 and on which
supx u0(x) < 1.

Theorem 2.1 Let {xi(t)}i be the exclusion process with variable diffusion coefficient {λi}i

and starting from xn
u0

. For almost every realization of the environment {λi}i ,

lim
n→∞

x0(tn
2)

n
= r(t)

in probability, where r(t) is the solution of

∫ r(t)

0
u(t, x)dx = −

∫ t

0
∂xu(s,0)ds,

u(t, x) is the solution of the hydrodynamic equation ∂tu = λ∂2
xu with initial condition u0

and λ = (E[λ−1
i ])−1.

Notice in the previous theorem, the subdiffusive scaling, the dependence on the effective
diffusion coefficient λ and the quenched statement about the random diffusion coefficients.
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Once we have obtained a law of large numbers, a natural question is whether a central
limit theorem holds.

Theorem 2.2 Consider an initial flat profile u0(x) ≡ ϕ. Let {xi(t)} be the exclusion process
with variable diffusion coefficient {λi}i and starting from xn

ϕ . Then,

lim
n→∞

1

n1/2
x0

(
tn2

) =
√

(1 − ϕ)
√

λ

ϕ
Zt ,

where Zt is a symmetric fractional Brownian motion of Hurst index 1/4 and the convergence
is in the sense of finite-dimensional distributions convergence.

Notice in the previous theorem the explicit dependence of the limiting process in λ and ϕ.

3 The Coupling Method

As we mentioned before, the environment process ηenv
t is a Markov process, but with a

complicated non-local dynamics due to the ordering of particles. In order to obtain a local
dynamics, we define a new process ξt with state space �zr = N

Z

0 by taking ξt (i) = xi+1(t)−
xi(t). It is easy to verify that ξt is a Markov process, generated by the operator

Lzrf (ξ) =
∑

i∈Z

λi

{
g(ξ(i))

[
f (ξ i,i+1) − f (ξ)

] + g
(
ξ(i + 1)

)[
f (ξ i+1,i ) − f (ξ)

]}
,

where g : N0 → R is defined by g(0) = 0, g(i) = 1 if i ≥ 1, and ξ i,j is defined by

ξ i,j (l) =
{

ξ(i) − 1, l = i,
ξ(j) + 1, l = j ,
ξ(l), l �= i, j .

The process ξt is known in the literature as a zero-range process with bond disorder.
Although this functional transformation of the simple exclusion into a zero-range process
was already exploited by Kipnis [15] to obtain the scaling limit of a tagged particle in the
asymmetric simple exclusion process, the mathematical tools in order to treat the zero-range
process with bond disorder have been developed only recently [9, 13]. The dynamics of this
model can be described as follows. At each bond 〈i, i + 1〉 we attach a conductance λi ,
corresponding to a exponential clock of rate λi . Each time this clock rings, we choose one
of the directions i → i + 1 or i + 1 → i with equal probability. Then we displace a particle
from the origin site to the destination site. If there is not a particle on the origin site at that
time, nothing happens. We do this independently for any bond 〈i, i + 1〉.

Notice that the flat initial profile ϕ induces an initial distribution of particles which is left
invariant by the evolution of ηenv

t . It also introduces, via the previous mapping, an invariant
measure of product form for the evolution of ξt . In the latter, the density of particles is
(1 −ϕ)/ϕ. Let us denote by ji,i+1(t) the total current of particles through the bond 〈i, i + 1〉
for the process ξt . The key observation is that the position of the tagged particle x0(t) in
the original model is exactly equal to the current through the bond 〈−1,0〉 in the model ξt .
Therefore, Theorem 2.1 is consequence of the following result:
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Theorem 3.1 Under the assumptions of Theorem 2.1,

lim
n→∞

1

n
j−1,0

(
tn2

) = −
∫ t

0
λ	

(
v(s,0)

)
∂xv(s,0)ds,

where v(t, x) is the solution of the Cauchy problem

{
∂tv(t, x) = ∂x(λ	(v(t, x))∂xv(t, x)),

v(0, x) = v0(x),
(3.1)

the function 	(v) is given by 	(v) = 1/(1 + v)2 and the initial condition v0(x) is defined
below.

About the initial condition v0, we notice that our choice of xn
u0

induces a choice ξn
0 in the

initial distribution of ξt as well. Therefore, we define v0 as the functional transformation of
u0 in the continuous limit. This is given by the relation

∫ z+∫ z
0 v(x)dx

0
u(y)dy = z.

Defining V (z) = z + ∫ z

0 v0(x)dx, we see that V satisfies the ODE

{
d
dz

V (z) = u0(V (z))−1,

V (0) = 0,

from where we obtain v0 by taking v0(x) = V ′(x) − 1 = (1 − u0(V (x)))/u0(V (x)). The
same reasoning allows us to relate the densities ut and vt . See [21] for more details.

In the same way, Theorem 2.2 is consequence of the following result:

Theorem 3.2 Under the assumptions of Theorem 2.2,

lim
n→∞

1

n1/2
j−1,0

(
tn2

) =
√

(1 − ϕ)
√

λ

ϕ
Zt .

3.1 The Law of Large Numbers

Equation (3.1) corresponds to the hydrodynamic equation of the process ξt . For the process
ξt restricted to a finite volume, the so-called hydrodynamic limit has been obtained in [9]
(see also [13]). Under the technical condition u(±∞) �= 0,1, the result in [9] can be ex-
tended to infinite volume as in [4]. Therefore, we have the following

Proposition 3.3 For any continuous function G : R → R of bounded support, we have

lim
n→∞

1

n

∑

x∈Z

ξtn2(x)G(x/n) =
∫

R

G(x)v(t, x)dx

in probability with respect to the law of ξt starting from ξn
0 , where v(t, x) is the solution of

the hydrodynamic equation (3.1).
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Notice that the particular form of the effective diffusion coefficient λ follows from the
well known fact that in dimension 1, the homogenized diffusion coefficient is equal to the
harmonic mean of the microscopic diffusion coefficient. See [13] for more details. Starting
from this proposition, the law of large numbers for j−1,0(t) is easy to understand. In fact,
the macroscopic density flux across 0 in the hydrodynamic equation is given by J0(t) =
− ∫ t

0 λ	(v(s,0))∂xv(s,0)ds. Therefore, Theorem 3.1 states that the current j−1,0(t), when
properly rescaled, converges to J0(t). Notice that Proposition 3.3 does not give the desired
result immediately, since an exchange of limits between the derivative and the scaling has to
be justified. In order to justify this exchange, we can proceed as in [12], so we will just give
an outline of the arguments. When the total mass

∫
v0(x)dx of the initial condition v0(x) is

finite, the integrated current satisfies

J0(t) =
∫ ∞

0

{
v(t, x) − v(0, x)

}
dx. (3.2)

The identity is just saying that the total current across 0 is equal to the mass at time t

to the right of the origin, minus the mass at the right of the origin at time 0, an integrated
version of the conservation of mass. Let us define G0(x) = 1{x ≥ 0}, the Heaviside function.
We can rewrite J0(t) = ∫

R
G0(x)(v(t, x) − v(0, x))ds and in an analogous way,

1

n
j−1,0

(
tn2

) = 1

n

∑

x∈Z

{
ξtn2(x) − ξ0(x)

}
G0(x/n). (3.3)

If the initial profile has non-null asymptotic densities v0(±∞) = limx→±∞ v0(x), then
formula (3.2) still makes sense, but we can not send n to ∞ in (3.3), since G0 is not of
compact support. Let us define Gl(x) = (1 − x/l)+ for x ≥ 0 and Gl(x) = 0 for x < 0.
Here (·)+ denotes positive part. Taking the Cauchy limit of the right side of the following
expression, it is not difficult to see that

1

n
j−1,0

(
tn2

) = lim
l→∞

1

n

∑

x∈Z

{ξtn2(x) − ξ0(x)}Gl(x/l),

the limit being in L2(Pn), where Pn is the law of the process ξtn2 starting from ξn
0 . Moreover,

the limit is uniform in l. But now, since the support of Gl is compact, we can use the result
of Proposition 3.3 to pass to the limit in the previous expression, and to obtain the desired
result.

3.2 The Central Limit Theorem

We recall the strategy in order to prove a law of large numbers for the current j−1,0(t)

followed in the previous section. The idea is to relate the current to some linear functionals
of the density of particles. This relation holds for the microscopic model, and also for the
density flux in the macroscopic equation. In this way, the scaling limit of the current should
follow from the scaling limit of the density of particles. However, the functional considered
was not continuous, and therefore a cut-off argument was needed in order to take the limit.
The final step was to justify an exchange of limits between the scaling and the cut-off.
This strategy also gives a central limit theorem for the current in the zero-range process ξt .
Differently from [12], in the case of the zero-range process the central limit theorem for the
density of particles has only been obtained in equilibrium, restricting ourselves to flat initial
profiles.
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Now we explain what do we mean by a central limit theorem for the density of particles.
For the initial configuration xn

ϕ , the associated initial distribution ξn
0 is a product, uniform

measure ν̄ϕ in �zr with marginals given by

ν̄ϕ(ξ(x) = k) = ϕ(1 − ϕ)k.

A simple computation shows that the measure ν̄ϕ satisfies detailed balance with respect
to the evolution of ξt , and therefore it is an invariant, reversible measure for this dynamics. It
is not hard to check that it is also an ergodic measure for ξt . Let us notice that the number of
particles in the zero-range process ξt is locally conserved, and due to ergodicity, it is the only
locally conserved quantity. Therefore, it is more natural to parametrize the family {ν̄ϕ;ϕ ∈
[0,1]} of ergodic, invariant measures by the density of particles at each site. It is easy to see
that the density of particles ρ(ϕ) defined by ρ(ϕ) = ∫

ξ(x)ν̄ϕ satisfies ρ(ϕ) = (1 − ϕ)/ϕ.
We define then ϕ(ρ) = 1/(1 +ρ) and νρ = ν̄ϕ(ρ). Now fix a density ρ ∈ (0,∞) and consider
the process ξt , starting from the measure νρ . This is equivalent to start the exclusion process
with variable diffusion coefficient from the configuration xn

ϕ for ϕ = 1/(1 + ρ).
Let S ′(R) be the space of tempered distributions. Let us define the S ′(R)-valued process

Yn
t by

Yn
t (G) = 1√

n

∑

x∈Z

G(x/n)
(
ξtn2(x) − ρ

)
,

for G in S(R), the Schwartz space of test functions in R. We call this process the density
fluctuation field. The following proposition has been proved in [9]:

Proposition 3.4 The fluctuation field Yn
t converges in the sense of finite distributions to

a generalized Ornstein-Uhlenbeck process of mean zero and characteristics λ	(ρ)∂2
x and√

λρ/(1 + ρ)∂x .

As in the case of the law of large numbers, the current j−1,0(t) satisfies

1√
n

j−1,0

(
tn2

) = lim
l→∞

Yn
t (Gl) −Yn

0 (Gl),

the limit being uniform in L2(Pn). Therefore, we conclude that

lim
n→∞

1√
n

j−1,0
(
tn2

) = lim
l→∞

Yt (Gl) −Y0(Gl).

This last expression is formally equivalent to Yt (G0) − Y0(G0). The covariances of the
process Yt are given by

E
[
Yt (G)Ys(H)

] = ρ(1 + ρ)

∫
G(x)St−sH(x)dx

for t ≥ s ≥ 0 and G,H ∈ S(R), where St = etλ∂2
x is the heat semigroup. With the aid of this

formula, it is not difficult to prove that the covariances of the process Yt (G0) − Y0(G0) are

the same of
√

ρ
√

λZt , which proves Theorem 3.2.
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4 Conclusions and Remarks

1. Comparing our results with the classical result of Arratia [2] and the results in [13], we see
that the variable diffusion coefficient enters into the scaling limit of the tagged particle only
through the effective diffusion coefficient λ. Notice that this effective diffusion coefficient
is the same obtained by homogenization, although our system is subdiffusive. This is due
to the fact that, for particle systems with bond disorder, the disorder and the time evolution
can be decoupled using a stochastic version of the compensated compactness lemma [9].
We conclude that the subdiffusive behavior is a purely dynamical feature, since the factor√

(1 − ϕ)
√

λ/ϕ is the same appearing for a simple exclusion process with uniform diffusion

coefficient λ. In particular, the variance of x0(t) is of order
√

2λt/π(1 − ϕ)/ϕ as t → ∞.

2. About our assumptions on the initial conditions for the law of large numbers, the product
structure of the initial measure μn is far from necessary. The more general assumptions are
the following. First we need the initial measure μn to be associated to some macroscopic
profile u0, in the sense that the particle density should converge in distribution to u0(·) (for
a precise definition, see Sect. 2.3 of [9]). The second assumption is a bound on the entropy
density of the initial measure μn with respect to the measure μϕ obtained as the product
measure associated to the flat profile u0 ≡ ϕ. We also need the distribution of ξn

0 to be
stochastically dominated by the measure νρ for some ρ > 0. This imposes the restriction
supx u0(x) < 1.

3. In the CLT for the tagged particle, a key input is the fluctuation result for the particle
density, Proposition 3.4. A complete proof of the results in Proposition 3.4 is only available
in equilibrium, making the choice of xn

ϕ rather restrictive. To extend Proposition 3.4 to the
non-equilibrium setting remains one of the main open problems in the theory of scaling
limits of particle systems. Notice that such a result has been obtained in [13] for the simple
exclusion process in random media and in [11] for the zero-range process. None of these
approaches can be adapted to our situation, however.

4. The assumptions on the variable diffusion coefficients {λi}i are not, by far, optimal. We
have taken {λi}i as an i.i.d. sequence just to fix ideas. In fact, in order to get the results of
Theorem 2.1, it is enough that supi λi > 0 and

lim
n→∞

1

n

0∑

i=−n

λ−1
i = lim

n→∞
1

n

n∑

i=0

λ−1
i = λ−1

both exist and are different from 0. To obtain the results in Theorem 2.2, we need in addition
the ellipticity condition ε−1

0 > λi > ε0 for every i. In particular, both results remain true if
for instance we take a periodic sequence {λi}i of diffusion coefficients.
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